Global Convergence of a New Hybrid Gauss--Newton Structured BFGS Method for Nonlinear Least Squares Problems

نویسندگان

  • Weijun Zhou
  • Xiaojun Chen
چکیده

In this paper, we propose a hybrid Gauss-Newton structured BFGS method with a new update formula and a new switch criterion for the iterative matrix to solve nonlinear least squares problems. We approximate the second term in the Hessian by a positive definite BFGS matrix. Under suitable conditions, global convergence of the proposed method with a backtracking line search is established. Moreover, the proposed method automatically reduces to the Gauss-Newton method for zero residual problems and the structured BFGS method for nonzero residual problems in a neighborhood of an accumulation point. Locally quadratic convergence rate for zero residual problems and locally superlinear convergence rate for nonzero residual problems are obtained for the proposed method. Some numerical results are given to compare the proposed method with some existing methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modify the linear search formula in the BFGS method to achieve global convergence.

<span style="color: #333333; font-family: Calibri, sans-serif; font-size: 13.3333px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-dec...

متن کامل

Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis

We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...

متن کامل

On the convergence of an inexact Gauss-Newton trust-region method for nonlinear least-squares problems with simple bounds

We introduce an inexact Gauss-Newton trust-region method for solving bound-constrained nonlinear least-squares problems where, at each iteration, a trust-region subproblem is approximately solved by the Conjugate Gradient method. Provided a suitable control on the accuracy to which we attempt to solve the subproblems, we prove that the method has global and asymptotic fast convergence properties.

متن کامل

Using an Efficient Penalty Method for Solving Linear Least Square Problem with Nonlinear Constraints

In this paper, we use a penalty method for solving the linear least squares problem with nonlinear constraints. In each iteration of penalty methods for solving the problem, the calculation of projected Hessian matrix is required. Given that the objective function is linear least squares, projected Hessian matrix of the penalty function consists of two parts that the exact amount of a part of i...

متن کامل

A two-dimensional search for a Gauss-Newton algorithm

This paper describes a fall-back procedure for use with the Gauss-Newton method for nonlinear least-squares problems. While the basic Gauss-Newton algorithm is often successful, it is well-known that it can sometimes generate poor search directions and exhibit slow convergence. For dealing with such situations we suggest a new two-dimensional search strategy. Numerical experiments indicate that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2010